

High Performance Computing & Big Data Services

hpc.uni.lu
hpc@uni.lu
hpc@uni.lu

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0

Dr. S. Varrette, H. Cartiaux, S. Peter, Dr. E. Kieffer, T. Valette, A. Olloh

University of Luxembourg (UL), Luxembourg https://hpc.uni.lu

6th HPC and Cluster Technologies Conference (HPCCT 2022)

July 10th, 2022, Fuzhou, China

S. Varrette & al. (Univ. of Luxembourg)

Summary

Network Organisation Tiered Shared Storage infrastructure Computing Performance Evaluation and Acceptance Tests

2 User Software Environment

3 User Job Management and the Slurm infrastructure

4 Conclusion and Perspectives

Summary

Network Organisation Tiered Shared Storage infrastructure Computing Performance Evaluation and Acceptance Tests

2 User Software Environment

User Job Management and the Slurm infrastructure

4 Conclusion and Perspectives

S. Varrette & al. (Univ. of Luxembourg)

University of Luxembourg

- Created in 2003, moved to Belval (South of the country) in 2015
- Among the top 250 universities in the Times Higher Education (THE) Rankings 2021
 - \hookrightarrow N°1 worldwide in the THE "international outlook" Rankings
 - \leftrightarrow N°20 worldwide in the THE Young University Rankings 2021.
 - \checkmark N°4 (out of 64) in the THE Millennials Rankings 2021.

Uni.lu HPC (UL HPC) Facility

Managed and operated since 2007 (Dr. S. Varrette & Co.)

 → 2nd Largest HPC facility in Luxembourg after EuroHPC MeluXina

UL HPC Supercomputers: iris cluster

S. Varrette & al. (Univ. of Luxembourg)

hpc-docs.uni.lu/systems/iris/

- Dell/Intel supercomputer Air-flow cooling
 - \leftrightarrow 196 compute nodes, **5824 cores**, 52.2 TB RAM
 - \hookrightarrow R_{peak} : 1,07 PetaFlop/s
 - ✓ regular nodes

- (Dual CPU, 128 to 256 GB of RAM)
- GPU nodes (Dual CPU, 4 NVidia accelerators, 768 GB RAM)
- Large-memory nodes
- (Quad-CPU, 3072 GB RAM)

blocking factor 1:1.5

- Fast InfiniBand (IB) EDR network
 - → **Fat-Tree** Topology
- Stepwise deployment since 2017
 - \hookrightarrow two major upgrade phases (2018 and 2019)

UL HPC Supercomputers: aion cluster

hpc-docs.uni.lu/systems/aion/

- Atos/AMD supercomputer, DLC cooling
 - \hookrightarrow 4 BullSequana XH2000 adjacent racks
 - \leftrightarrow 318 regular nodes, 40704 cores, 81.4 TB RAM
 - \hookrightarrow R_{peak} : 1,693 PetaFLOP/s
- Fast InfiniBand (IB) HDR network
 - → **Fat-Tree** Topology

- blocking factor 1:2
- Acquisition by European Tender in 2020
 - \hookrightarrow production release in Oct 2021 (delaved by COVID)

S. Varrette & al. (Univ. of Luxembourg)

Het spreden Hydraik connectors Cild piele

UL HPC Supercomputers: aion cluster

hpc-docs.uni.lu/systems/aion/

- Atos/AMD supercomputer, DLC cooling (EOY update)
 - \hookrightarrow 4 BullSequana XH2000 adjacent racks
 - \hookrightarrow 354 regular nodes, 45312 cores, 90.6 TB RAM
 - \hookrightarrow R_{peak} : **1,885** PetaFLOP/s
- Fast InfiniBand (IB) HDR network
 - → Fat-Tree Topology
 - e Topology blocking factor 1:2
- Acquisition by European Tender in 2020

 → production release in Oct 2021
 (del.
 - \rightarrow First upgrade EOY 2022
- (delayed by COVID)
- +36 regular nodes

Hat spraden Hydrauk consectors Cal plane

UL HPC Supercomputers: aion cluster

hpc-docs.uni.lu/systems/aion/

- Atos/AMD supercomputer, DLC cooling
 - \hookrightarrow 4 BullSequana XH2000 adjacent racks
 - \hookrightarrow 354 regular nodes, 45312 cores, 90.6 TB RAM
 - \hookrightarrow R_{peak} : **1,885** PetaFLOP/s
- Fast InfiniBand (IB) HDR network
 - → Fat-Tree Topology
- Acquisition by European Tender in 2020
 - \hookrightarrow production release in Oct 2021 (delayed by COVID)
 - $\hookrightarrow\,$ First upgrade EOY 2022

blocking factor 1:2

• In this talk:

 $\,\hookrightarrow\,$ design choices & config. changes when integrating aion, with performance evaluation

Fast Local Infiniband (IB) Interconnect Network

• **before** integration of aion (iris alone)

CDC S-02-005 (Arthow - infs, storage) Fait Tree NoreBiologing All 2 Spine IB (SIB) EDR switches 10^{-1} 10^{-

٠

hpc-docs.uni.lu/interconnect/ib/

[PEARC22] S. Varrette, H. Cartiaux, T. Valette and A. Olloh, "Aggregating and Consolidating two High Performant Network Topologies: The ULHPC Experience" in ACM Practice and Experience in Advanced Research Computing (PEARC'22), Boston, USA, 2022.

S. Varrette & al. (Univ. of Luxembourg)

.

Fast Local Infiniband (IB) Interconnect Network

• after merging iris and aion IB islands

hpc-docs.uni.lu/interconnect/ib/

[PEARC22] S. Varrette, H. Cartiaux, T. Valette and A. Olloh, "Aggregating and Consolidating two High Performant Network Topologies: The ULHPC Experience" in ACM Practice and Experience in Advanced Research Computing (PEARC'22), Boston, USA, 2022.

S. Varrette & al. (Univ. of Luxembourg)

Complementary Ethernet Network

hpc-docs.uni.lu/interconnect/ethernet/

- Flexibility of Ethernet-based networks still required
- 2-layers topology
 - \hookrightarrow Upper level: Gateway Layer
 - routing, switching features, network isolation and filtering (ACL) rules
 - meant to interconnect only switches.
 - allows to interface University network (LAN/WAN)
 - \hookrightarrow bottom level: Switching Layer
 - [stacked] core switches
 - TOR (Top-the-rack) switches
 - meant to interface HPC servers and compute nodes

[PEARC22] S. Varrette, H. Cartiaux, T. Valette and A. Olloh, "Aggregating and Consolidating two High Performant Network Topologies: The ULHPC Experience" in ACM Practice and Experience in Advanced Research Computing (PEARC'22)

S. Varrette & al. (Univ. of Luxembourg)

UL HPC Storage Systems

- Two types of distributed & parallel FS
 - \hookrightarrow IBM Spectrum Scale (formelly GPFS)
 - \hookrightarrow Lustre \$SCRATCH storage
- Complementary storage infrastructure
 - \hookrightarrow **OneFS** (Dell/EMC Isilon)
 - ✓ project data, backup & archival

hpc-docs.uni.lu/filesystems/

File System	Vendor	#Disks Raw/	Raw/Effective capacity		
GPFS (2017-)	DDN	710 HDDs + 38 SSDs	4260 / 3408 TB		
Lustre (2018-)	DDN	Object Storage Targets: 167 HD Meta-Data Targets: 19 SSDs	Ds 1300 / 920 TB		
OneFS (2014-)	Dell/EMC	n/a (NDA)	7100 / 6400 TB		

UL HPC Storage Systems

- Two types of distributed & parallel FS
 - → IBM Spectrum Scale (formelly GPFS)
 - \hookrightarrow Lustre \$SCRATCH storage
- Complementary storage infrastructure
 - → **OneFS** (Dell/EMC Isilon)
 - 🗸 project data, backup & archival

IOR v3.1.0 - MPI Coordinated Test of Parallel I/O on ULHPC Facility

hpc-docs.uni.lu/filesystems/

File System	Vendor	#Disks Raw/Eff	Raw/Effective capacity		
GPFS (2017-)	DDN	710 HDDs + 38 SSDs	4260 / 3408 TB		
Lustre (2018-)	DDN	Object Storage Targets: 167 HDDs Meta-Data Targets: 19 SSDs	1300 / 920 TB		
OneFS (2014-)	Dell/EMC	n/a (NDA)	7100 / 6400 TB		

UL HPC Storage Systems

- Two types of distributed & parallel FS
 - → IBM Spectrum Scale (formelly GPFS)
 - $\hookrightarrow \textbf{ Lustre \$SCRATCH storage}$
- Complementary storage infrastructure
 - \hookrightarrow **OneFS** (Dell/EMC Isilon)
 - ✓ project data, backup & archival
- EU's GDPR (General Data Protection Regulation) and Open Science compliance [APF21]

[APF21] L. Paseri, S. Varrette, "Protection of Personal Data in HPC Platform for Scientific Research Purposes", in Proc. of the EU Annual Privacy Forum (APF) 2021, LNCS vol. 12703, pp. 123–142.

hpc-docs.uni.lu/filesystems/

10 / 20

UL HPC Storage Systems

- Two types of distributed & parallel FS
 - → IBM Spectrum Scale (formelly GPFS)
 - $\hookrightarrow \textbf{ Lustre \$SCRATCH storage}$
- Complementary storage infrastructure
 - \hookrightarrow **OneFS** (Dell/EMC Isilon)
 - ✓ project data, backup & archival
- EU's GDPR (General Data Protection Regulation) and Open Science compliance [APF21]
- Specific quota and purging policy depending on usage pattern/sustaining FS

	Directory	File System	Backup	Default Quota	Default Inode quota	Purging time
\$HOME	/home/users/ <login></login>	GPFS/Spectrumscale	yes (daily)	500 GB	1 M	-
	/work/projects/ <name></name>	GPFS/Spectrumscale	yes (daily)	n/a	0	-
\$SCRATCH	/scratch/users/ <login></login>	Lustre	no	10 TB	1 M	60 days
	/mnt/isilon/projects/ <name></name>	OneFS	yes (snapshot, weekly)	1.14 PB globally	-	-

hpc-docs.uni.lu/filesystems/

• Bisection Bandwidth (BB) benchmarks: 96,99% efficiency

MPI Parallel Bisection Bandwidth (BB) benchmark of ULHPC IB Network

- Bisection Bandwidth (BB) benchmarks: 96,99% efficiency
- STREAM sustainable Memory Bandwidth performance
 - $\,\hookrightarrow\,$ above 90,01% efficiency for 4 highly-intensive memory access pattern

STREAM Single-Node Performance (aion supercomputer)

- Bisection Bandwidth (BB) benchmarks: 96,99% efficiency
- STREAM sustainable Memory Bandwidth performance
 - $\,\hookrightarrow\,$ above 90,01% efficiency for 4 highly-intensive memory access pattern

• Single-node HPL performance

Processor/GPU Model	#Cores	Freq.	$\mathbf{R}_{\mathrm{peak}}$	Avg. R_{max}
AMD ROME 7H12 (epyc)	64	2.6 GHz	2.66 TFlops	2.09 TFlops
Intel Xeon E5-2680v4 (broadwell)	14	2.4 GHz	0.54 TFlops	0.46 TFlops
Intel Xeon Gold 6132 (skylake)	14	2.3 GHz^*	1.03 TFlops	0.94 TFlops
Intel Xeon Platinum 8180M (skylake)	28	2.3 GHz*	2.06 TFlops	1.76 TFlops
NVidia Tesla V100-SXM2	5120 + 640	1.3 GHz	7.80 TFlops	5.59 TFlops

*: AVX-512 Turbo Frequency

S. Varrette & al. (Univ. of Luxembourg)

- Bisection Bandwidth (BB) benchmarks: 96,99% efficiency
- STREAM sustainable Memory Bandwidth performance

 above 90,01% efficiency for 4 highly-intensive memory access pattern
- Single-node HPL performance (sorted distribution within aion nodes)

HPL Single-Node Performance (aion supercomputer)

S. Varrette & al. (Univ. of Luxembourg)

UL HPC Performance Evaluations [selected benchs]

	Benchmark	#N	(Main parameters)	Best Performance	Efficiency	Improvement*	Equivalent We	orldwide Rank
_	HPL (Top500)	318	$(NB=192, P \times Q=48 \times 53)$	<i>R</i> _{max} = 1255.36 TFlops	74.10%	+1.9%	>500 (Nov 2021)	# 490 (Jun 2020)
1	Green500	318		5.19 GFlops/W		+12.83%	#71 (Jun 2022)	#56 (Jun 2021)
ion	HPCG	318		16.842 TFlops		+15.35%	#144 (Nov 2021)	# 135 (Jun 2021)
A.	Graph500 BFS	$2^8 = 256$	(Scale: 36,Edge:16)	975 GTEPS		+64%	# 31 (Jun 2022)	# 23 (Jun 2021)
	GreenGraph500	$2^8 = 256$		6.14 MTEPS/W		+180%	# 43 (Jun 2022)	# 36 (Jun 2021)
	-			*: performance impro	vement with the r	ninimal acceptance thr	reshold set in the Aion ter	nder document
	IO500 (isc21 release)	128		11.345219			#42 (Nov 20	20 - latest release)
	HPL (CPU/broadwell)	108		84.75 TFlops	72.98%			
	HPL (GPU/V100 16G)	72	$(NB=320, P \times Q=12 \times 6)$	283.6 TFlops	52.87%			
ris	HPCG (GPU/V100 16G)	72		8.74 TFlops				
Ι	HPL (GPU/V100 32G)	24	$(NB=288, P \times Q=6 \times 4)$	135.2 TFlops	75.61%			
	HPCG (GPU/V100 32G)	24		2.90 TFlops				

• Reference benchmarks: HPL, HPCG, Graph500, Green500, GreenGraph500

- \hookrightarrow I/O specific: IO500, IOR
- (not presented) Unified European Application Benchmark Suite (UEABS)

S. Varrette & al. (Univ. of Luxembourg)

User Software Environment

Summary

Overview of the Managed Facility Network Organisation Tiered Shared Storage infrastructure Computing Performance Evaluation and Acceptance Tests

2 User Software Environment

User Job Management and the Slurm infrastructure

4 Conclusion and Perspectives

Accelerating Research - User Software Sets

- Over 280 software packages available for researchers
 - \hookrightarrow software environment generated using RESIF 3.0 framework [PEARC21] over Easybuild
 - $\checkmark~$ optimized builds organized by architecture, exposed through Environment Modules/Lmod
- Theorize Bovelop Gompute Simulate Experiment
- $\checkmark~$ Categorized Naming Scheme

 $<\!\!category\!\!>/\!<\!\!name\!\!>/\!<\!\!version\!\!>\!\!-\!<\!\!toolchain\!\!>\!<\!\!versionsuffix\!\!>$

	Software set release <version></version>							
Component	2019b legacy	2020b prod	2021b devel					
binutils	2.32	2.35	2.37					
GCCCore	8.3.0	10.2.0	11.2.0					
foss	2019b	2020b	2021b					
- OpenMPI	3.1.4	4.0.5	4.1.2					
intel	2019b	2020b	2021a					
- Compilers/MKL	2019.5.281	2020.1.217	2021.4.0					
- Intel MPI	2018.5.288	2019.7.217	2021.4.0					
Python	3.7.4	3.8.6	3.9.6					
RESIF version	3.0	3.0	3.1					
#Software Modules	<arch>: 269</arch>	<arch>: 274</arch>	<arch>: 282</arch>					
	gpu: 135	gpu: 151	gpu: 157					

[PEARC21] S. Varrette, E. Kieffer, F. Pinel, E. Krishnasamy, S. Peter, H. Cartiaux, and X. Besseron. "RESIF 3.0: Toward a Flexible & Automated Management of User Software Environment on HPC facility". In ACM Practice & Experience in Advanced Research Computing (PEARC'21) pdf – code

S. Varrette & al. (Univ. of Luxembourg)

<category>/<name>/<version>-<toolchain><versionsuffix>

Accelerating Research - User Software Sets

- Over 280 software packages available for researchers
 - \hookrightarrow software environment generated using RESIF 3.0 framework [PEARC21] over Easybuild
 - \checkmark optimized builds organized by architecture, exposed through Environment Modules/Lmod

S. Varrette & al. (Univ. of Luxembourg)

[PEARC21] S. Varrette, E. Kieffer, F. Pinel, E. Krishnasamy, S. Peter, H. Cartiaux, and X. Besseron. "RESIF 3.0: Toward a Flexible & Automated Management of User Software Environment on HPC facility". In ACM Practice & Experience in Advanced Research Computing (PEARC'21) pdf – code

UNIVERSITÉ DU LUXEMBOURG

Accelerating Research - User Software Sets

- Over 280 software packages available for researchers
 - \hookrightarrow software environment generated using **RESIF 3.0** framework [PEARC21] over Easybuild
 - optimized builds organized by architecture, exposed through Environment Modules/Lmod

<category>/<name>/<version>-<toolchain><versionsuffix>

- containerized applications delivered with Singularity system \rightarrow
- \hookrightarrow user web/application portal (ouside regular SSH access): Open OnDemand

LUXEMBOURC

User Job Management and the Slurm infrastructure

Overview of the Managed Facility Network Organisation Tiered Shared Storage infrastructure Computing Performance Evaluation and Acceptance Tests

Summary

2 User Software Environment

3 User Job Management and the Slurm infrastructure

4 Conclusion and Perspectives

S. Varrette & al. (Univ. of Luxembourg)

ULHPC Slurm Partitions and QOS 2.0

AION Partition	Туре	#Node	PriorityTier	DefaultTime	MaxTime	MaxNodes
interactive batch	floating	318 318	100 1	30min 2h	2h 48h	2 64
IRIS Partition	Туре	#Node	PriorityTier	DefaultTime	MaxTime	MaxNodes
interactive	floating	196	100	30min	2h	2
batch		168	1	2h	48h	64
gpu		24	1	2h	48h	4

[ISPDC22] S. Varrette, E. Kieffer and F. Pinel, "Optimizing the Resource and Job Management System of an Academic HPC and Research Computing Facility" in 21st IEEE Intl. Symp. on Parallel and Distributed Computing (ISPDC'22)

S. Varrette & al. (Univ. of Luxembourg)

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0

ULHPC Slurm Partitions and QOS 2.0

AIOI	N Partition	Туре	#Node	Priorit	yTier	De	faultTime		MaxTi	ime M	MaxNodes
in	teractive	floating	318 318	100		30 2b	min	:	2h 48h	2	2
IRI	S Partition	Туре	#Node	Priorit	yTier	De	faultTime		MaxTi	ime M	MaxNodes
in	teractive batch gpu bigmem	floating	196 168 24 4	100 1 1 1		30 2h 2h 2h	min	-	2h 48h 48h 48h	2 6 4 1	2 64
QOS	Partition	Allowed	[L1] Account		Prio	GrpTRES	MaxTresPJ	MaxJob	PU	Flags	
besteffort low normal long debug high urgent	* * * interactive *	ALL ALL (de Default UL,Proje ALL (restrict (restrict	fault for CRP/exter (UL,Projects,) ects,etc. ed) UL,Projects,Ind ed) UL,Projects,Ind	nals) ustry ustry	1 100 100 150 200 1000	node=12 node=8	node=2	100 2 50 4 2 10 100		NoReserve DenyOnLimit DenyOnLimit DenyOnLimit DenyOnLimit DenyOnLimit DenyOnLimit	PartitionTimeLimit

[ISPDC22] S. Varrette, E. Kieffer and F. Pinel, "Optimizing the Resource and Job Management System of an Academic HPC and Research Computing Facility" in 21st IEEE Intl. Symp. on Parallel and Distributed Computing (ISPDC'22)

S. Varrette & al. (Univ. of Luxembourg)

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0

Fairsharing and Accounting 2.0

- New configuration with Multifactor Priority Plugin and Fair tree algorithm
 - \hookrightarrow migration from Depth-Oblivious Fair-share (*initial* setup)
 - $\,\hookrightarrow\,$ new jobs are immediately assigned a priority fairshare levels

[ISPDC22] S. Varrette, E. Kieffer and F. Pinel, "Optimizing the Resource and Job Management System of an Academic HPC and Research Computing Facility" in 21st IEEE Intl. Symp. on Parallel and Distributed Computing (ISPDC'22)

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0

Fairsharing and Accounting 2.0

- New configuration with Multifactor Priority Plugin and Fair tree algorithm
 - \hookrightarrow migration from Depth-Oblivious Fair-share (*initial* setup)
 - $\,\hookrightarrow\,$ new jobs are immediately assigned a priority fairshare levels
- Accounting records re-organized as a hierarchical tree (3 layers $L_{1,2,3}$ + leafs)
 - $\,\hookrightarrow\,$ raw share attribution based on funding score and job efficiency

[ISPDC22] S. Varrette, E. Kieffer and F. Pinel, "Optimizing the Resource and Job Management System of an Academic HPC and Research Computing Facility" in 21st IEEE Intl. Symp. on Parallel and Distributed Computing (ISPDC'22)

S. Varrette & al. (Univ. of Luxembourg)

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0

.

Fairsharing and Accounting 2.0

- New configuration with Multifactor Priority Plugin and Fair tree algorithm
 - \hookrightarrow migration from Depth-Oblivious Fair-share (*initial* setup)
 - $\,\hookrightarrow\,$ new jobs are immediately assigned a priority fairshare levels
- Accounting records re-organized as a hierarchical tree (3 layers $L_{1,2,3}$ + leafs)
 - $\,\hookrightarrow\,$ raw share attribution based on funding score and job efficiency

Impact of the new Slurm configuration

- Daily utilization increased by 12.64% to reach 81.56% of available resources → measures from workload traces over several months of uninterrupted HPC services
- Wall-time Request Accuracy (WRA) of processed jobs increased by 110,81%
 → evaluation covering 1 year period before and after configuration change
- UL HPC budget incomes increased in 2021 by 10%

[ISPDC22] S. Varrette, E. Kieffer and F. Pinel, "Optimizing the Resource and Job Management System of an Academic HPC and Research Computing Facility" in 21st IEEE Intl. Symp. on Parallel and Distributed Computing (ISPDC'22)

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0

.

Summary

Overview of the Managed Facility Network Organisation Tiered Shared Storage infrastructure Computing Performance Evaluation and Acceptance Tests

2 User Software Environment

User Job Management and the Slurm infrastructure

4 Conclusion and Perspectives

Conclusion

- In this talk:
 - $\,\hookrightarrow\,$ Design choices when acquiring & integrating a new supercomputer aion
 - $\checkmark~$ smooth integration within the existing HPC ecosystem
 - $\,\hookrightarrow\,$ Overview of the managed HPC facility
 - \checkmark supercomputer architectures, network organization, tiered shared storage infrastructure
 - $\checkmark~$ HPC performance evaluation
 - $\hookrightarrow \text{ User software environment \& Resource and Job Management System (RJMS) adaptation}$

Conclusion

- In this talk:
 - $\,\hookrightarrow\,$ Design choices when acquiring & integrating a new supercomputer aion
 - $\checkmark\,$ smooth integration within the existing HPC ecosystem
 - $\,\hookrightarrow\,$ Overview of the managed HPC facility
 - \checkmark supercomputer architectures, network organization, tiered shared storage infrastructure
 - $\checkmark~$ HPC performance evaluation
 - $\hookrightarrow \text{ User software environment \& Resource and Job Management System (RJMS) adaptation}$
- Not covered here:
 - $\,\hookrightarrow\,$ Data center design and characteristics
 - $\,\hookrightarrow\,$ DevOps Software stack for research computing services management
 - ✓ based on Puppet and Ansible (Bluebanquise stack)

Conclusion

- In this talk:
 - $\,\hookrightarrow\,$ Design choices when acquiring & integrating a new supercomputer aion
 - $\checkmark~$ smooth integration within the existing HPC ecosystem
 - $\,\hookrightarrow\,$ Overview of the managed HPC facility
 - \checkmark supercomputer architectures, network organization, tiered shared storage infrastructure
 - \checkmark HPC performance evaluation
 - $\hookrightarrow \text{ User software environment \& Resource and Job Management System (RJMS) adaptation}$
- Not covered here:
 - $\,\hookrightarrow\,$ Data center design and characteristics
 - $\,\hookrightarrow\,$ DevOps Software stack for research computing services management
 - ✓ based on Puppet and Ansible (Bluebanquise stack)
- Perspectives and Future directions
 - \hookrightarrow smooth integration with Euro-HPC infrastructures
 - $\checkmark~$ transparently outsource Research Computing/data analytic workflows to Tier-0 systems
 - \hookrightarrow automatically offload of less-demanding jobs onto virtual cloud resources

Questions?

Sebastien Varrette, Hyacinthe Cartiaux, Sarah Peter, Emmanuel Kieffer, Teddy Valette and Abatcha Olloh

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0 – ACM HPCCT 2022

University of Luxembourg, Belval Campus Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: firsname.lastname@uni.lu

High Performance Computing @ Uni.lu

mail: hpc@uni.lu

Doverview of the Managed Facility Network Organisation Tiered Shared Storage infrastructure Computing Performance Evaluation and Acceptance Tests

User Software Environment

User Job Management and the Slurm infrastructure

High Performance Computing @ Uni.lu

hpc.uni.lu

ULHPC Technical Docs

hpc-docs.uni.lu

Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0

20 / 20

