
HPC School - Beginner

S2 - Work on the ULHPC

1

Outline

2

- When can the ULHPC help me?

- How a cluster works?

- Types of workers

- Types of jobs

- Partitions and QoS

- Modules

- Monitoring your jobs

- Storage

- Learn more by yourself

- What can I do to help the ULHPC?

When can the ULHPC help me?

Embarrassingly parallel jobs

This is when you have a lot of similar jobs to run. Maybe running one job on your laptop is fine but 10000

jobs would take too long.

Multi threaded applications

Laptop / work machines usually have 2 to 16 cores. If what you run can take advantage (compute multiple

things at the same time by distributing computation on the available cores), then you could benefit from

our nodes, ranging from 28 to 128 cores.

3

When can the ULHPC help me?

Not enough memory on my machine

Laptop / work machines usually have between 8G to 32G or RAM. This may be too small for your

experiments. We have nodes from 128G to 3000G of RAM.

Multi node (computer) application

Sometime, even one big node is not enough. Our cluster allow you to run jobs up to 64 nodes per job. On

AION this means 8192 cores and 16T of RAM.

Not enough storage

The ULHPC benefits from several storage services for a total of 10PB (10 000 TB)

4

How a cluster works?

- You first access a cluster via its access node
- You then use worker nodes to compute your jobs

- Access nodes
- Servers on which you “land” when you connect on the cluster
- Can be used to request resources
- Should not be used to compute things
- Application programs via module are not available

- Worker nodes
- Servers on which computation should be run
- When you request some resources from the access nodes, the resources are from the worker nodes
- Several types of worker nodes at ULHPC (discussed in detail later)

5

How a cluster works?

Example:

- You connect on AION, you
are now on an access node

- For your work, you need 64
cores / 128G of RAM

- You request those resources
from the access node

- When available, you land on
the machine on which the
resources you received are
located

6

How a cluster works?

Example:

- You connect on AION, you
are now on an access node

- For your work, you need 64
cores / 128G of RAM

- You request those resources
from the access node

- When available, you land on
the machine on which the
resources you received are
located

7

Lëtz build ourselves a little playground

Go to the home directory
$ cd

If you have not done it yet - clone the repository containing the files on the ULHPC
$ git clone https://github.com/ULHPC/hpc-school-for-beginners.git

If you already have cloned it - please update it
$ cd hpc-school-for-beginners; git pull

If you encounter an issue delete the folder and clone again
$ rm -Rf hpc-school-for-beginners

Types of worker nodes at ULHPC

Currently the ULHPC offers the following types of resources:

CPU nodes

- Recommended for most usages
- Large number of nodes

GPU nodes

- Nodes with graphic card accelerators
- More and more tools take advantage of GPUs
- Limited number of nodes

Bigmem nodes

- Recommended when a tool has huge memory requirements which cannot be distributed over multiple nodes
- Very limited number of nodes

9

Types of worker nodes at ULHPC

Currently the ULHPC offers the following types of resources:

CPU nodes

- AION: 354 nodes, each node has 128 cores and 256G of RAM

- IRIS: 168 nodes, each node has 28 cores and 128G of RAM

GPU nodes

- IRIS: 18 nodes, each node has 28 cores and 768G of RAM and 4 NVIDIA V100 with 16G

- IRIS: 6 nodes, each node has 28 cores and 768G of RAM and 4 NVIDIA V100 with 32G

Bigmem nodes

- IRIS: 4 nodes, each node has 112 cores and 3T RAM

10

Types of jobs

Two types of jobs:

- interactive jobs

- batch jobs

Interactive: when you receive the resources you can type commands in an interactive fashion and see the

results. This is adapted to debugging / trial and errors.

Batch: you submit the commands you wish to be executed and you specify the resources. When the

resources are available, your commands are executed automatically. This type of job is adapted to run

campaigns of experiments.

11

Interactive jobs

Request an interactive job

- si for CPU nodes

- si-gpu for GPU nodes (on the IRIS cluster only)

- si-bigmem for bigmem nodes (on the IRIS cluster only)

Important parameters

- -t to specify the duration. 30 min is the default, 120 min is the max

- -c to specify the number of cores. 1 by default.

- add --reservation=school-interactive to use the HPC School reservation

Example: si -c8 -t120 --reservation=school-interactive request a 2 hours interactive

session with 8 cores on a CPU node

12

Interactive jobs

Multiple jobs can run on each node, from multiple users. How are the resources shared?

Example 1

- A user wants 64 cores on an AION node
- Reminder: each AION node has 128 cores and 256G of RAM
- If the user enters si -c64, that user will have half the available cores and will automatically receive half the RAM:

64 cores and 128G of RAM.
- It means 1 AION core → 2G of RAM

Example 2

- A user wants 1 core on an IRIS node:
- Reminder: each IRIS CPU node has 28 cores and 128G of RAM
- The user will receive 1/28th of 128G of RAM, roughly 4G

Note: IRIS and AION CPU nodes have a different RAM per core ratio
13

Interactive jobs

Multiple jobs can run on each node, from multiple users. How are the resources shared?

Example 3

- A user wants 1 GPU to run some experiment

- On a GPU node, you also have CPU cores and RAM

- All of those resources are linked together
- Reminder: each GPU node has

- 28 cores
- 768G of RAM
- 4 NVIDIA V100

- si-gpu -c7 will lead to: 1 GPU, 7 CPU cores and 7/28th (¼) of the 768G of RAM

Note: requesting more than 7 CPU cores could lead to some GPUs to not be allocable for other users by

Slurm. Please think about this when using GPU nodes. In case of doubt, contact us via service now.

14

Interactive jobs - 🫵 now it is your turn

Exercice 1
Request 8 cores for 60 minutes

Check the worker node name

Close your interactive session to deallocate the ressources

Exercice 2
Request enough cores to have 64G of RAM on an AION node for 2 hours

Exercice 3
Can you book the same amount of cores on an IRIS CPU node than the answer of exercice 2?

How much cores would you have to request on a IRIS CPU node to have 64G of RAM?

15
Note: do not forget to add --reservation=school-interactive or to use the HPC School reservation

Interactive jobs - solutions

Exercice 1
Request 8 cores for 60 minutes

Solution: si -c8 -t60 --reservation=school-interactive

Exercice 2
Request enough cores to have 64G of RAM on an AION node for 2 hours

Solution: si -c32 -t120 --reservation=school-interactive

Exercice 3
Can you book the same amount of cores on an IRIS CPU node than the answer of exercice 2?

Solution: no, IRIS CPU nodes have 28 cores

How much cores would you have to request on a IRIS CPU node to have 64G of RAM?

Solution: 14 cores, each cores receives 4G on an IRIS CPU node

16

Batch jobs

Submit a batch job

- Use the sbatch command, usually, sbatch some-script.sh
- The script contains:

- A first section containing Slurm parameters (what resources you want, for how long…).
- A second section containing what your job should do with those resources

- This script is usually referred as the launcher script
- We maintain launcher script templates for various use cases, see documentation

17

https://hpc-docs.uni.lu/slurm/launchers

Batch jobs

Submit a batch job

- First line is mandatory for scripts

- #SBATCH parameters specify your job

characteristics. Here we request 16 cores

for 5 minutes on the batch partition (CPU)

- Anything after #SBATCH is what should be

executed on the allocated resources. Here,

we execute a Python script.

📚Documentation about SBATCH options: https://hpc-docs.uni.lu/slurm/#job-submission-options

18

Exercice 1
Execute your first batch job, use the one in batch-job/batch-job-launcher.sh . Check the slurm

output file and ensure it contains the “It works” message. It should be in a file named like this

slurm-JOBID.out

Exercice 2
Execute the same launcher multiple times but:

- The job names should be different, e.g. job1, job2…

- The output and error files should contain the job names, e.g. job1.out, job2.err

Exercice 3
Add email notification to your launcher to receive an email with your jobs are done

Batch jobs - 🫵 now it is your turn

19

Number of tasks and core per task

Slurm tasks?

- In our documentation you will come across the notion of Slurm task

- In our launcher templates you will see -n or --n-tasks-per-node
- For most use case, do not use it or set it to 1

- If your application does not support multi-node computation → 1 task

- There are exceptions, in case of doubt, contact us via service now

Note: if your app is not fast enough, do not increase -n as an attempt to speed up the computation: it will

allocate more resources but they will likely not be used

20

https://service.uni.lu/sp?id=sc_cat_item&sys_id=b0fbd45ddb83c4109aa59ee3db96193d&sysparm_category=3ce9eb49db8f84109aa59ee3db96196d

What are partitions?

Partitions

In Slurm multiple nodes can be grouped into partitions which are sets of nodes aggregated by shared

characteristics.

You will find on ULHPC resources the following partitions:

- batch is intended for running parallel scientific applications as passive jobs on CPU nodes

- gpu is intended for running GPU-accelerated scientific applications as passive jobs on "gpu" nodes

- bigmem is dedicated for memory intensive data processing jobs on "bigmem" nodes

- interactive: a floating partition intended for interactive jobs

21

Partitions

Partitions

In Slurm multiple nodes can be grouped into partitions which are sets of nodes aggregated by shared

characteristics.

Question:
- What is the maximum amount of GPUs you can use for one single job?

- Can you use the interactive partition to test a program over 10 nodes?

Type Default/MaxTime MaxNodes (per job)

interactive 30min - 2h 2

batch (cpu) 2h-48h 64

gpu 2h-48h 4

bigmem 2h-48h 1

22

QoS

QoS (Quality of Service)
Quality of Service or QOS is used to constrain or modify the characteristics that a job can have.

For example: longer run time or a high priority queue for a given job

Interesting QoS
- long: for longer jobs, max 4 (running) jobs per user (simplification), up to 14 days

- besteffort: a preemptible (your jobs can be killed when the cluster is too busy with other normal

jobs and restarted when resources are available again), max 300 (running) jobs per user

(simplification), up to 50 days

You can type sqos to learn about all existing QoS and their restrictions

23

QoS

24

Type Max # of running jobs Max duration

normal 100 2 days

long 4 per users, 6 per user group 14 days

best effort 300 50 days

QoS

Example: submit a long job

sbatch --qos long my-script.sh

Example: submit a besteffort job

sbatch --qos besteffort my-script.sh

📚Documentation: https://hpc-docs.uni.lu/jobs/long/#long-jobs
25

Note

The portal is only accessible from the UL network (or via the UL VPN)

Software on ULHPC

There are plenty of way to run software on the ULHPC:

- Modules (see next slides)

- Conda → check our tutorial

- Containers → check our tutorial

- Use Jupyter Notebook, Abaqus CAE, Matlab or Stata via a GUI → check our portal

- Compile your own program → too advanced for this tutorial

26

https://ulhpc-tutorials.readthedocs.io/en/latest/python/basics/#working-with-conda-environments
https://ulhpc-tutorials.readthedocs.io/en/latest/containers/ULHPC-containers/
https://hpc-portal.uni.lu/

Modules

Modules

- The ULHPC proposes and maintain software via modules.

- Pre-installed software, multiple version of the same software can co-exist

- Workflow: search modules, load them, use them

- Only available on worker nodes: you will see an error if you try to use the module command on an

access node.

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
27

Modules

Module search

module av the-program-you-want

On the right, we search with the keyword “Python”.

The list of results contains various elements which

are sorted by category (e.g. chem = Chemistry, lang

= Programming languages, …)

We can see that two version of the Python

language are available: 2.7.18 and 3.8.6. If no

version is specified, the default choice (D) will be

assumed, here 3.8.6.

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
28

Modules

Module search

module av the-program-you-want

🫵Now it is your turn:

- Look for a program that may interest you,

e.g. Matlab

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
29

Module list

List the currently loaded modules

module list

Module load

module load the-program-you-want

Module purge

Unload all loaded modules

module purge

Modules

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
30

Module list

List the currently loaded modules

module list

Module load

module load the-program-you-want

Module purge

Unload all loaded modules

module purge

Modules

🫵Now it is your turn:

- Ensure you have no loaded module

- Look for Python and load the 3.8

Python module

- Ensure Python 3.8 is loaded via

python --version

- Purge your environment

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
31

Modules that change the set of available modules

Sticky modules

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
32

Default set of modules: module load env/development/2023b

Modules that change the set of available modules

Sticky modules

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
33

Default set of modules: module load EESSI/2023.06

Modules that change the set of available modules

● Local modules:

module load env/X/Y

where X = development, release, deprecated

● EESSI modules:

module load EESSI/2023.06

● Local modules more optimized, EESSI more standardized across systems

● Purge sticky modules with --force flag:

module --force purge

Sticky modules

📚Documentation: https://hpc-docs.uni.lu/environment/modules/
34

Monitor your jobs

Why monitor your jobs?

- Check the status of your jobs

- For each job, check its progression

- Ensure ULHPC resources are used efficiently

35

Monitor your jobs

Monitor your jobs - check the status of your jobs

To see the full list of your jobs and their current status, you can use: sq

In this example you see

jobs of random user. The

ST column means status

and you can see jobs which

are PD (pending, i.e. not

yet started) and jobs

which are R (running).

36

Monitor your jobs

Monitor your jobs - check the progression of a job

By default, for a running job, there will be two files:

- An output file, containing the log of your job

- An error file, containing the errors of your job

By default, the files will be named slurm-JOBID.out and slurm-JOBID.err

You can check the content of those files with a variety of commands, from an access node:

- cat filename, less filename will display the current full content of the file

- tail -f filename will display the end of the file and keep waiting for new content until you

close it via CTRL+C

37

Monitor your jobs

Monitor your jobs - check the progression of a job

🫵Now it is your turn:

- Go to the monitor folder

- Submit the launcher monitor.sh script inside it

- Follow the progression of the execution using tail -f command

Reminders: By default, the files will be named slurm-JOBID.out and slurm-JOBID.err

tail -f filename will display the end of the file and keep waiting for new content until you close

it via CTRL+C
38

Monitor your jobs - check the efficient usage of resources

1. Use the following command: sjoin JOB-ID to connect to your worker’s job

2. Use the htop command, press u and select your user to see what is happening

3. Exit by pressing q or CTRL+C

Monitor your jobs

39

Monitor your jobs - check the efficient usage of resources

Monitor your jobs

40

Monitor your jobs - check the efficient usage of resources

Monitor your jobs

🫵Now it is your turn:

1. Go to the monitor folder

2. Submit the launcher stress.sh script inside it

3. Find out what is your job id: sq
4. Use sjoin JOB-ID to go on the worker node of your job

5. Use the htop command (optional: press u and select your user to see what is

happening for your user)

6. Exit by pressing q or CTRL+C
7. Exit the worker node and go back to the access node via CTRL+D

41

Monitor your jobs - cancel a job

1. Use the following command: scancel JOB-ID to cancel a specific job

2. Use the following command: scancel -u username to cancel all your jobs

Please cancel all your jobs with scancel -u username before next exercise

Monitor your jobs

42

Monitor your jobs - cancel a job

Monitor your jobs

🫵Now it is your turn:

1. Go to the monitor folder

2. Submit the launcher stress-toolong.sh script inside it

3. Find out what is your job id

4. Cancel the job via the scancel command

5. Ensure your job is no longer running with sq

Reminder: scancel JOB-ID to cancel a specific job

43

Example 1

Here we can see that all 128 cores look very busy (100%) and we can see the load average is high. We can

also see that the memory usage is quite low. Good usage of ULHPC resource for a CPU bound job.

Monitor your jobs

44

Example 2

Here we can see that not all the cores are used and that the memory is not used much. It is likely that this

job could be optimized. In case of doubt, please contact us by opening a ticket.

Monitor your jobs

45

https://service.uni.lu/sp?id=sc_cat_item&sys_id=b0fbd45ddb83c4109aa59ee3db96193d&sysparm_category=3ce9eb49db8f84109aa59ee3db96196d

Example 3

Don’t be that person :)

Monitor your jobs

46

Monitor your jobs - check the efficient usage
of resources - GPU case

1. Use the following command: sjoin
JOB-ID to connect to your worker’s

job

2. Type nvidia-smi to check the GPU

usage (computing and memory)

🫵Now it’s your turn:

GPU nodes are rare and in high demand, and

we are too many so no practical session, sorry

Monitor your jobs

47

- Types of storage

- Different storage quotas

- Pricing

Storage

48

We offer different storage services:

- Home: this storage is personal to each user. When connecting to the ULHPC, you land in your home

storage. The location should look like this: /home/users/your-username
- Project: project storage are meant to store / share files for a specific project. Multiple users can

have access to a project space. The location starts with /work/projects/project-name
- Scratch: special storage for temporary files. The location starts with

/scratch/users/your-username.

Important note on storage

ULHPC storage is shared and costly. It is meant for running computation only and should not be used as a

long term solution. We cannot backup everything and we do not guarantee the long term safety of your

storage.

Storage

49

Storage quota and pricing

- Home: free, 500G quota, no possible extension

- Scratch: free, 10T quota, no possible extension

- Project: 1T free, 0.02€ (excl. VAT) / GB / Month above the free 1T

Note

You can check your current quota usage with the following command df-ulhpc

Note 2

 Additionally to the storage size quota, the is a number of files quota (referred as inodes quota), e.g., you

cannot have as many files as you want. you can check this quota usage with the following command

df-ulhpc -i

Storage - quota - price

50

Let’s see an example of df-ulhpc

Storage - quota

Your home

and scratch

Your projects

51

Let’s see an example of df-ulhpc -i

Storage - quota - price

Your home

and scratch

Your projects

🫵Now it's your turn: try df-ulhpc and df-ulhpc -i

52

Storage - quota

Soft quota is the quota you should respect

Hard quota is slightly above the soft quota, the system will prevent you to go above

Grace period is the remaining duration you have when you are between the soft and the hard quota.

Example: if the grace period states “1 day” you can still create / modify files while being above the soft

quota. After the grace period is expired, you will be blocked until you fix the situation.

53

Storage - transfer

To transfer data from and to the ULHPC you can:

- Use MobaXterm file transfer feature, see our documentation

- Use rsync to synchronise a source directory with a destination directory, see our documentation

54

https://hpc-docs.uni.lu/data/transfer/#using-mobaxterm-windows
https://hpc-docs.uni.lu/data/transfer/#using-rsync

I want to know more

- Use virtual environments (R / Python / Conda)
- Why? Compartmentalize your experimental setups, promotes reproducibility
- R → try packrat
- Python → try venv
- Python things but also other non-Python stuffs → try conda

- Even more reproducibility? Containers

- If you use interactive job, use tmux to prevent losing your current terminal state

- Use GNU parallel to efficiently run embarrassingly parallel jobs, see tutorial

- Check our tutorials, maybe there is something that you need

55

https://rstudio.github.io/packrat/
https://docs.python.org/3/library/venv.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/tmux/tmux/wiki
https://ulhpc-tutorials.readthedocs.io/en/latest/sequential/basics/
https://ulhpc-tutorials.readthedocs.io/en/latest/beginners/

What can I do to help the ULHPC?

When you submit a FNR project, include a budget for HPC resources

- It helps us to buy new hardware

- Link to our estimators

- If you need help with our estimators, contact us via service now

When you submit jobs for your paid project, do not forget to link your jobs to your project as follows

- See our documentation about this

56

https://hpc-docs.uni.lu/policies/usage-charging/#how-to-estimate-hpc-costs-for-projects
https://hpc-docs.uni.lu/policies/usage-charging/#submit-project-related-jobs

Thank you

57

