
HPC School - Beginner

S1-2 - Don’t fear the command line

1

Before we start

2

Objectives:

● get acquainted to the linux command line interface (CLI)

● be able to manipulate the file system

● be able to decrypt complicated commands

Prerequisite: you should be able to connect to the HPC cluster

A little bit of history

● Computers before the early 80s’
○ room sized, expensive
○ as powerful as a modern scientific calculator
○ multi user
○ central computer / terminal model

● Philosophy
○ use resources as efficiently as possible
○ textual human/machine interface (shell)
○ small specialized programs

Similarities with the modern HPC and Cloud ethos

Connect to the HPC cluster

Mobaxterm CLI

The command prompt

previous
command
exit status

username hostname current
directory

(job id node count/task count/task per node)

The bash shell

command
prompt

The linux file system

● Tree structure starting at /
○ No drives as in windows (c:, …)

● Strong conventions
○ System directories

■ /etc - configuration files
■ /bin - built-in programs
■ /usr - ‘user system resource’

other installed programs, libraries, …
■ /home - users personal directories

○ Program installation follows conventions
■ difficult to know what is installed
■ the system able to provide completion

● Files and directories
○ ~ - shorthand for /home/users/<user_name>
○ . - current directory
○ .. - parent directory
○ .filename - hidden file/directory

● Access rights
○ user - group

○ d[rwx][rwx][rwx]
■ directory [user][group][other]

■ read - write - execute/navigate

Anatomy of a command

program [flags]... [arguments]...

● flags = options that change the behavior of the program
○ not sensitive to order
○ long flags - more readable, annoying to type

■ start with -- e.g. --all
■ can have parameters e.g. --format=long --ignore foo

○ short flags - condensed, difficult to parse
■ start with - e.g. -l -a
■ can be combined - e.g. -la. The order of the tags is not relevant -la = -al
■ can also have parameters - e.g. -I foo

● arguments = parameters of the program
○ positional
○ number of arguments depends on the program

● example - all these commands are equivalent
○ $ls -la
○ $ls -a -l
○ $ls --format=long -a

A little bit of help

● Manual page more comprehensive
○ man <command>

■ e.g. $ man ls
● Help flag when a man page does not exist

○ <command> --help
■ e.g. $ ls --help

A little bit of help

Now, you do it!

● What does the echo command do?

● What does the which command do?

A little bit of help

Now, you do it!

● What does the echo command do?

● What does the which command do?

Lëtz build ourselves a little playground

Go to the home directory
$ cd

Pull the repository containing the files
$ git clone https://github.com/ULHPC/hpc-school-for-beginners.git

Check the content
You should see a couple of files and directories. Check that the CLI directory is present.
$ ls ~/hpc-school-for-beginners

Go to the directory containing the files for the tutorial
$ cd hpc-school-for-beginners/CLI

Navigating through the file system

● pwd - print working directory
○ show the full path of the current directory
○ useful to know where you are

● ls - list
○ list the files and directories in the current directory
○ add a path in argument to show the content of another

directory
○ -a flag shows hidden files and directories
○ -l formats the output and shows access right

● cd - change directory
○ cd with no argument returns you to your home dir
○ cd /<path> - go the the indicated absolute path

■ e.g. $ cd /home/users/hpcuser/foo/
○ cd ./<path> or cd <path> - go to the relative path

■ e.g. $ cd ./foo then $ cd nestedFoo
○ cd .. - go to the parent directory

■ e.g. from ~/foo/nestedFoo - & cd ../../dir

Tab autocompletes
paths and your
commands

Navigating through the file system

Now, you do it!

● go to your home directory

● from there, go to the tutorial directory
hpc-school-for-beginners/CLI/playground

● go back a level then to the docs

directory

Navigating through the file system

Now, you do it!

● go to your home directory

● from there, go to the tutorial directory
hpc-school-for-beginners/CLI/playground

● go back a level then to the docs

directory

Executing programs and scripts

● Built-in and installed software
○ Built-in commands come with the shell
○ Installed software

■ via package manager or install scripts
■ copies files according to conventions

○ The OS is aware of their existence/location
■ just type their name (e.g. ls, cd)
■ the tab key proposes completion

(e.g. l + tab -> all executables starting with ‘l’)

● Scripts and non installed software
○ Launcher scripts (.sh), precompiled software from archives
○ The OS is usually not aware of their existence

■ must be executable
■ called using its path/name (either absolute (starts with /)

or relative (starts with ./)

Executing programs and scripts

Now, you do it!

● Go to ~/hpc-school-for-beginners/CLI
● Run the backup script located in

playground/scripts/backup.sh with the

file playground/files/important.txt as

an argument

● Check the content of the

playground/backup directory

backup.sh is a custom script and does not
have a man page or --help flag.
Usage is $./backup.sh <file_to_backup>

Executing programs and scripts

Now, you do it!

● Go to ~/hpc-school-for-beginners/CLI
● Run the backup script located in

playground/scripts/backup.sh with the

file playground/files/important.txt as

an argument

● Check the content of the

playground/backup directory

backup.sh is a custom script and does not
have a man page or --help flag.
Usage is $./backup.sh <file_to_backup>

Manipulating files (1/2)

● mkdir - make directory
○ create a directory at the designated path

■ $ mkdir test
■ $ mkdir i_dont_exist/test -> The command fails because the i_dont_exist directory does not exist.
■ $ mkdir -p i_dont_exist/test -> Recursively creates the directories if they do not exist.

● cp - copy
○ copy a file - cp <source> <destination>

■ $ cp ./dir/file.txt file(copy).txt
■ $ ls -> you should see test.txt

○ copy a directory - use the -r flag
■ $ cp -r ./dir ./foo/nestedFoo
■ $ cp -r ./dir ./foobar

The command fails. The foobar directory doesn’t exist.
○ copy files using a pattern

■ $ cp dir/* foo
copies all files in dir to foo

■ $ cp dir/*.txt foo
copies all files ending in .txt in dir to foo

Manipulating files (1/2)

Now, you do it!

● Create a ‘manual_backup’ directory in the

CLI directory

● Make a backup of

~/hpc-school-for-beginner/CLI
/playground/temp/experiment.out in the

‘manual_backup’ directory

Manipulating files (1/2)

Now, you do it!

● Create a ‘manual_backup’ directory in the

CLI directory

● Make a backup of

~/hpc-school-for-beginner/CLI
/playground/temp/experiment.out in the

‘manual_backup’ directory

Manipulating files (2/2)

● rm - remove file
○ There is no bin. Deleted files cannot be recovered.
○ delete a file

■ $ rm ~/hpcschool/foo/data.dat
○ delete a directory

■ $ rm -r ~/hpcschool/foo/nestedFoo
○ force deletion

■ $ rm -f -r ~/hpcschool/foo
● mv - move file

○ move a file/directory (cut and paste)
■ $ mv test.txt foo/test.txt

○ rename a file/directory = moving a file to the same directory
■ $ mv foo/test.txt foo/temp.txt

○ move and rename a file
■ $ mv foo/temp.txt ./test.txt

up and down arrows
navigate through recent
commands

Manipulating files (2/2)

Now, you do it!

● Delete the ~/hpc-school-for-beginner/CLI
/playground/temp directory and its content

● Move the backup of experiment.out to the

hpc-school-for-beginners/CLI/playground/
files/experiment/data directory and

rename it test001.com

Manipulating files (2/2)

Now, you do it!

● Delete the ~/hpc-school-for-beginner/CLI
/playground/temp directory and its content

● Move the backup of experiment.out to the

hpc-school-for-beginners/CLI/playground/
files/experiment/data directory and

rename it test001.com

Reading and writing files (1/2)

● cat - concatenates files and write to the standard output
○ $ cat <filename>
○ e.g. $ cat dir/data.csv

● less - reading longer files
○ $ less <filename>
○ e.g. $ less dir/data.csv
○ scroll with arrows/page up/page down
○ quit with q

● tail - show the last lines of a text file
○ $ tail <filename>
○ $ tail -n 25 <filename> - specify the number of displayed lines
○ $ tail -f <filename> - follow new lines

● chaining commands - the | operator
○ allow to pass the output of a command to the next one
○ $ ls -la /usr/bin | less

● grep - filtering utility
○ $ ls /usr/bin | grep update
○ $ grep pattern filename

ctrl-r allows to search your
command history

Reading and writing files (1/2)

Now, you do it!

● Launch playground/scripts/tailMe.sh &

and follow the output file (tailMe.out)

● In playground/files/experiments/data, find

all files that contain data about Methylene

(with a capitalized M)

Adding an ‘&’ at the end of a command will
make it run in the background. You will not
see any output but it will not block the
terminal while it is running.

Hit ctrl + c to interrupt any running program

The tailMe.sh script writes data to the
tailMe.out file every second for a minute.

Reading and writing files (1/2)

Now, you do it!

● Launch playground/scripts/tailMe.sh &

and follow the output file (tailMe.out)

● In playground/files/experiments/data, find

all files that contain data about Methylene

(with a capitalized M)

Adding an ‘&’ at the end of a command will
make it run in the background. You will not
see any output but it will not block the
terminal while it is running.

Hit ctrl + c to interrupt any running program

The tailMe.sh script writes data to the
tailMe.out file every second for a minute.

Reading and writing files (2/2)

● > and >> - redirect the standard output (i.e. output of a command in the terminal) to a file
○ & ls /usr/bin > all_bins.txt

■ creates or opens in overwrite mode the all_bins.txt file and write the output of ls /usr/bin in it
○ & ls -la /usr/bin >> all_bins.txt

■ creates or opens in append mode the all_bins.txt file and write the output of ls -la /usr/bin in it

● the nano text editor
○ $ nano [filename]
○ basic usage

■ write with your keyboard
■ move the cursor with the arrow keys

○ shortcuts
■ at the bottom of the screen
■ accessible via ctrl + <key>
■ e.g. save: ctrl + o; quit: ctrl + x

Changing permissions

chmod - change file mode bits

allows you to change access rights on

your files and directories

Why?
● give/restrict access to other people
● make some files executable

$ chmod 744 <filename>
● first number for the owner, second for the owner’s group, third for everyone else
● octal mode

○ 1 = execute
○ 2 = write
○ 4 = read

● for directories
○ execute allows to cd into
○ write allows to create/delete files
○ read allows to see the content of the directory

sum the numbers to adjust the rights
● 7 = 1+2+4 = x + w + r
● 4 = read only

Changing permissions

Now, you do it!

● make CLI/playground/files/secret.txt readable
only to you

● make CLI/playground/scripts/helloWorld.sh
executable and run it

Changing permissions

Now, you do it!

● make CLI/playground/files/secret.txt readable
only to you

● make CLI/playground/scripts/helloWorld.sh
executable and run it

Moving data

● Rsync is a utility that allows to synchronize data between machines
○ upload/download files
○ synchronize files between servers
○ resume interrupted transfers

● Push data
○ $ rsync -azvu <source> [user@]<host>:<destination>
○ $ rsync -azvu data_directory aion-cluster:my_data

● Pull data
○ $ rsync -azvu [user@]<host>:<source> <destination>
○ $ rsync -azvu aion-cluster:my_data data_directory

● Flags
○ a - archive mode (recursive, copies files, rights, links, …)
○ z - compress data during transfer (speeds up transmission)
○ v - verbose (display what is going on)
○ u - update (skip files that are newer on the receiver)
○ P - progress bar (monitor big transfers)

Moving data
Run rsync from your laptop, not from the HPC.
Finding the HPC cluster from your laptop is
easier than finding your laptop from the cluster.Now, you do it!

● copy the content of the CLI/docs directory to
your machine to get this presentation and a
command line interface cheat sheet pdf We need to add the -e ‘ssh -p 8022’ flag to

access the custom ssh port of the cluster.

Moving data
Run rsync from your laptop, not from the HPC.
Finding the HPC cluster from your laptop is
easier than finding your laptop from the cluster.Now, you do it!

● copy the content of the CLI/docs directory to
your machine to get this presentation and a
command line interface cheat sheet pdf We need to add the -e ‘ssh -p 8022’ flag to

access the custom ssh port of the cluster.

Do the same for the other file or copy the whole directory at once.

Final Boss

$ man bash > tmp.dat
$ cat tmp.dat | grep -i bash | wc -l

Find out what these commands are doing. Don’t run them yet!

Final Boss

$ man bash > tmp.dat
$ cat tmp.dat | grep -i bash | wc -l

Find out what these commands are doing. Don’t run them yet!

● first command
○ redirect the content of the man page command for the bash program to the tmp.dat file

● second command
○ display the content of the tmp.dat file (cat) and
○ pipe the result to grep. Only keep the lines that contain ‘bash’ while ignoring the case and
○ pipe the output to wc which will count the number of lines (-l flag)

● summary: count the number of lines containing ‘bash’ (case insensitive) in the man page of the bash

program

Final Boss - Phase 2

$ export HPL_VERSION=2.3
$ wget --continue http://www.netlib.org/benchmark/hpl/hpl-${HPL_VERSION}.tar.gz
$ tar xvzf hpl-${HPL_VERSION}.tar.gz

Find out what these commands are doing? Don’t run them yet!

You might need the help of google on this one!

http://www.netlib.org/benchmark/hpl/hpl-$%7BHPL_VERSION%7D.tar.gz

Final Boss - Phase 2

$ export HPL_VERSION=2.3
$ wget --continue http://www.netlib.org/benchmark/hpl/hpl-${HPL_VERSION}.tar.gz
$ tar xvzf hpl-${HPL_VERSION}.tar.gz

Find out what these commands are doing? Don’t run them yet!

You might need the help of google on this one!

● set an environment variable

● download a file from netlib.org. The name of the file depends on the value of the environment

variable that has been set previously. If the file was partially downloaded, continue instead of

redownloading everything.

● extract the files (x) from a gzip archive (z) in the hpl-2.3.tar.gz file (f) and show the logs (v)

http://www.netlib.org/benchmark/hpl/hpl-$%7BHPL_VERSION%7D.tar.gz

Final Boss - Final form

Make ~/hpc-school-for-beginners/CLI/final_boss/runme.sh executable and run it.

What did it do? How can you get rid of it? The script might contain clues and you have all the keys…

Final Boss - Final form

Make ~/hpcschool/data/runme.sh executable and run it.

What did it do? How can you get rid of it? The script might contain clues and you have all the keys…

● Too many files to be deleted one by one. Maybe they all have a pattern in common?

● It seems that you don’t have the rights to remove files in this directory

Final Boss - Final form

Make ~/hpc-school-for-beginners/CLI/final_boss/runme.sh executable and run it.

What did it do? How can you get rid of it? The script might contain clues and you have all the keys…

● Too many files to be deleted one by one. Maybe they all have a pattern in common?

● It seems that you don’t have the rights to remove files in this directory

● Regain write rights on the directory $ chmod 700 ~/hpc-school-for-beginners/CLI
● All files finish with a 1. Delete them using a pattern. $ rm -f ~/hpc-school-for-beginners/CLI/*1

Never trust random scripts and commands found on the internet. Try to understand them first!

Your rights are limited and you cannot really hurt the HPC cluster.

You could easily lose you data however.

Useful resources - explainshell.com

