

High Performance Computing & Big Data Services

hpc.uni.lu
hpc@uni.lu

@ULHPC

## Aggregating and Consolidating two High Performant Network Topologies The ULHPC Experience

sighpc

Association for Computing Machinery

### Dr. S. Varrette, H. Cartiaux, T. Valette and A. Olloh

University of Luxembourg (UL), Luxembourg https://hpc.uni.lu

Practice and Experience in Advanced Research Computing (PEARC'22)

July 13<sup>th</sup>, 2022, Boston, USA





PEARC<sub>22</sub>

S. Varrette & al. (Univ. of Luxembourg)



## Summary



**2** Proposed IB Topology when Merging the two IB Islands

**③** Proposed Ethernet Topology





.



## **HPC** Interconnect Technologies

| Technology           | Interconnect Family | Effective Bandwidth |           | Latency                  |  |
|----------------------|---------------------|---------------------|-----------|--------------------------|--|
| Gigabit Ethernet     | Ethernet            | 1 Gb/s              | 125 MB/s  | $40\mu s$ to $300\mu s$  |  |
| 10 Gigabit Ethernet  | Ethernet            | 10 Gb/s             | 1.25 GB/s | $4\mu s$ to $5\mu s$     |  |
| 100 Gigabit Ethernet | Ethernet            | 100 Gb/s            | 12.5 GB/s | 30µs                     |  |
| Infiniband EDR       | Infiniband          | 100 Gb/s            | 12.5 GB/s | 0.61µs to 1.3µs          |  |
| Infiniband HDR       | Infiniband          | 200 Gb/s            | 25 GB/s   | $0.5\mu s$ to $1.1\mu s$ |  |
| Intel Omnipath       | OmniPath            | 100 Gb/s            | 12.5 GB/s | 0.9µs                    |  |
| Cray Slingshot       | Proprietary Network | 200 Gb/s            | 12.5 GB/s | $0.3\mu s$ to $1.1\mu s$ |  |



[Source : www.top500.org, Jun 2022]



S. Varrette & al. (Univ. of Luxembourg)



# HPC Interconnect Technologies and Topologies



• CLOS Network / Fat-Trees: versatile, provides high bisection bandwidth  $\hookrightarrow$  the only topology allowing for a non-blocking network at large-scale





# Uni.lu HPC Supercomputers: iris cluster



S. Varrette & al. (Univ. of Luxembourg)

### hpc-docs.uni.lu/systems/iris/

- Dell/Intel supercomputer Air-flow cooling
  - $\,\hookrightarrow\,$  196 compute nodes, 5824 cores, 52.2 TB RAM
  - $\hookrightarrow$   $R_{\text{peak}}$ : 1,07 PetaFlop/s
    - ✓ regular nodes

- (Dual CPU, 128 to 256 GB of RAM)
- GPU nodes (Dual CPU, 4 NVidia accelerators, 768 GB RAM)
  - Large-memory nodes (Quad-CPU, 3072 GB RAM)
- Stepwise deployment since 2017 two upgrade phases (2018 and 2019)

### • iris Interconnect Technologies

- → Fast IB EDR network, Fat-Tree Topology
- → Complementary Ethernet Network





Initial iris IB ...







S. Varrette & al. (Univ. of Luxembourg)



### Initial iris IB ... and Ethernet Interconnect







S. Varrette & al. (Univ. of Luxembourg)

#### Aggregating & Consolidating two High Performant Network Topologies.

.



Het spraden Hydraik connectors Cidi pite

## Uni.lu HPC Supercomputers: aion cluster

hpc-docs.uni.lu/systems/aion/

- Acquisition by European Tender in 2020
  - $\,\hookrightarrow\,$  production release in Oct 2021
- Atos/AMD supercomputer, DLC cooling
  - $\hookrightarrow$  4 BullSequana XH2000 adjacent racks
  - $\hookrightarrow$  318 regular nodes, 40704 cores, 81.4 TB RAM
  - $\hookrightarrow$   $R_{\text{peak}}$ : 1,693 PetaFLOP/s
- aion Interconnect Technologies
  - → Fast IB HDR network, Fat-Tree Topology
  - $\hookrightarrow$  Complementary Ethernet Network







Heat spreaders Hydraulic convectors Cold plane

## Uni.lu HPC Supercomputers: aion cluster

hpc-docs.uni.lu/systems/aion/

- Acquisition by European Tender in 2020
  - $\,\hookrightarrow\,$  production release in Oct 2021
- Atos/AMD supercomputer, DLC cooling
  - $\hookrightarrow$  4 BullSequana XH2000 adjacent racks
  - $\hookrightarrow$  318 regular nodes, 40704 cores, 81.4 TB RAM
  - $\hookrightarrow$   $R_{\text{peak}}$ : 1,693 PetaFLOP/s
- aion Interconnect Technologies
  - → Fast IB HDR network, Fat-Tree Topology
  - $\hookrightarrow$  Complementary Ethernet Network



In this talk: when integrating aion into the existing HPC ecosystem:
 → Lessons learned from aggregating the IB and Ethernet networks





### • aion came with its own internal IB Fat-Tree "island"

- $\,\hookrightarrow\,$  4 spine SIB and 8 LIB HDR switches (200 Gb/s)
- $\hookrightarrow$  compute node connected through HDR100 splitter cables (or "Y-cables")
  - $\checkmark~$  permits to drastically reduce the number of installed cables and thus the associated costs
  - $\checkmark\,$  price: blocking factor 2:1 yet induced bandwidth penalty aligned to iris capacities





### • aion came with its own internal IB Fat-Tree "island"

- $\,\hookrightarrow\,$  4 spine SIB and 8 LIB HDR switches (200 Gb/s)
- $\hookrightarrow$  compute node connected through HDR100 splitter cables (or "Y-cables")
  - $\checkmark~$  permits to drastically reduce the number of installed cables and thus the associated costs
  - $\checkmark\,$  price: blocking factor 2:1 yet induced bandwidth penalty aligned to iris capacities

### Q: how to merge the two IB islands (iris and aion) ?



S. Varrette & al. (Univ. of Luxembourg)



### • aion came with its own internal IB Fat-Tree "island"

- $\hookrightarrow$  4 spine SIB and 8 LIB HDR switches (200 Gb/s)
- $\hookrightarrow$  compute node connected through HDR100 splitter cables (or "Y-cables")
  - $\checkmark~$  permits to drastically reduce the number of installed cables and thus the associated costs
  - $\checkmark\,$  price: blocking factor 2:1 yet induced bandwidth penalty aligned to iris capacities

### Q: how to merge the two IB islands (iris and aion) ?

### • Approach 1: maintain a non-blocking configuration

- $\,\hookrightarrow\,$  upgraded Fat-tree topology for increased leaf capacity (216  $\rightarrow$  at least 530)
- $\hookrightarrow$  major recabling on iris required!
- $\,\hookrightarrow\,$  quickly discarded solution from past experience on cluster moving:
  - $\checkmark$  massive re-cabling always prone to errors (network)

.

(network fiber cables remain fragile components)





- Approach 2: allow for a blocking yet balanced configuration
  - $\,\hookrightarrow\,$  target low blocking factor with a good bisection bandwidth
  - $\,\hookrightarrow\,$  minimizing recabling operation

### a. Introduce an additional top level layer (L3)

- $\hookrightarrow\,$  several 'super' spine switches enabling to bridge the two IB islands.
- $\hookrightarrow$  would impact latency expected for I/O operations (expecially from aion)





- Approach 2: allow for a blocking yet balanced configuration
  - $\,\hookrightarrow\,$  target low blocking factor with a good bisection bandwidth
  - $\,\hookrightarrow\,$  minimizing recabling operation

### a. Introduce an additional top level layer (L3)

- $\,\hookrightarrow\,$  several 'super' spine switches enabling to bridge the two IB islands.
- $\hookrightarrow$  would impact latency expected for I/O operations (expecially from aion)

### b. (our proposal) Alternative topology kept on 2 layers only

- $\,\hookrightarrow\,$  DragonFly inspired, maintain Fat-tree height
- $\hookrightarrow$  keep a low blocking factor (different on both cluster)
  - $\checkmark\,$  minimizing congestion and other performance degrading factors.
- $\hookrightarrow$  Leaf capacity increase: 216  $\rightarrow$  12  $\times$  24 + 8  $\times$  48 = 672 end-points (+311%)





## Adapting the Fast Local IB Interconnect Network



• **before** integration of aion (iris alone)



S. Varrette & al. (Univ. of Luxembourg)



### Adapting the Fast Local IB Interconnect Network



- after merging iris and aion IB islands. In practice:
  - $\,\hookrightarrow\,$  6 LIB  $\leftrightarrow$  SIB cables removed within iris IB island to free 12 ports on each L2 SIB switches
    - $\checkmark\,$  used to connect (2-by-2) 4 Aion L2 SIB switches with the 6 Iris L2 SIB switches
  - $\,\hookrightarrow\,$  Adaptation of the subnet manager configuration (routing engine, root GUIDs etc. )





## **IB Network Aggregation Validation and Impact**

- Network sanity validation (once link state/speed and SM config carefully validated)
  - $\,\hookrightarrow\,$  OSU Microbenchmarks (version 5.6.3) for MPI collectives performance evaluation etc.
  - $\hookrightarrow$  IB Bisection Bandwidth (BB) benchmarks: 96,99% efficiency



#### MPI Parallel Bisection Bandwidth (BB) benchmark of ULHPC IB Network



S. Varrette & al. (Univ. of Luxembourg)



## **IB Network Aggregation Validation and Impact**

- Network sanity validation (once link state/speed and SM config carefully validated)
  - $\hookrightarrow$  OSU Microbenchmarks (version 5.6.3) for MPI collectives performance evaluation etc.
  - $\,\hookrightarrow\,$  IB Bisection Bandwidth (BB) benchmarks: 96,99% efficiency
- Marginal performance penalties
  - $\hookrightarrow$  IOR: less than 3% (resp. 0.3%) Read (resp. Write) bandwidth degradation

IOR v3.1.0 - MPI Coordinated Test of Parallel I/O on ULHPC Facility







## **IB Network Aggregation Validation and Impact**

• Network sanity validation (once link state/speed and SM config carefully validated)

- $\,\hookrightarrow\,$  OSU Microbenchmarks (version 5.6.3) for MPI collectives performance evaluation etc.
- $\,\hookrightarrow\,$  IB Bisection Bandwidth (BB) benchmarks: 96,99% efficiency
- Marginal performance penalties
  - $\hookrightarrow$  IOR: less than 3% (resp. 0.3%) Read (resp. Write) bandwidth degradation
  - $\hookrightarrow$  cf. also HPL, HPCG, Graph500, Green500, GreenGraph500 performance evaluation [HPCCT22]

|      | Benchmark             | #N          | (Main parameters)   | Best Performance                                                                             | Efficiency | Improvement* | Equivalent W        | orldwide Rank        |
|------|-----------------------|-------------|---------------------|----------------------------------------------------------------------------------------------|------------|--------------|---------------------|----------------------|
| Aion | HPL (Top500)          | 318         | (NB=192,P×Q=48×53)  | <i>R</i> <sub>max</sub> = 1255.36 TFlops                                                     | 74.10%     | +1.9%        | >500 (Nov 2021)     | #490 (Jun 2020)      |
|      | Green500              | 318         |                     | 5.19 GFlops/W                                                                                |            | +12.83%      | #60 (Nov 2021)      | #56 (Jun 2021)       |
|      | HPCG                  | 318         |                     | 16.842 TFlops                                                                                |            | +15.35%      | #144 (Nov 2021)     | #135 (Jun 2021)      |
|      | Graph500 BFS          | $2^8 = 256$ | (Scale: 36,Edge:16) | 975 GTEPS                                                                                    |            | +64%         | #27 (Nov 2021)      | #23 (Jun 2021)       |
|      | GreenGraph500         | $2^8 = 256$ |                     | 6.14 MTEPS/W                                                                                 |            | +180%        | #37 (Nov 2021)      | #36 (Jun 2021)       |
|      | -                     |             |                     | *: performance improvement with the minimal acceptance threshold set in the Aion tender docu |            |              | nder document       |                      |
|      | IO500 (isc21 release) | 128         |                     | 11.345219                                                                                    |            |              | # <b>42</b> (Nov 20 | 20 - latest release) |

[HPCCT22] S. Varrette H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and A. Olloh, "*Management of an Academic HPC & Research Computing Facility: The ULHPC Experience 2.0*". In 6<sup>th</sup> ACM HPC and Cluster Technologies Conference (HPCCT 2022), Fuzhou, China (2022).



S. Varrette & al. (Univ. of Luxembourg)



## **Difficulties Met and Lesson Learned**

### Take Away Messages for PEARC community

- Align to a compliant MOFED version each island before merging
  - $\hookrightarrow$  check for kernel requirements from deployed OS
    - ✓ MUST match deployed GPFS/Lustre expectations (gplbin: GPFS portability layer)
  - $\hookrightarrow$  heterogeneous HW complexifies the selection (switches models, CX{3,4,6} HCA...)
  - $\,\hookrightarrow\,$  MOFED upgrade comes with ALL equipement FW alignment
    - ✓ Careful with the upgrade path





## **Difficulties Met and Lesson Learned**

### Take Away Messages for PEARC community

- Align to a *compliant* MOFED version each island before merging
  - $\hookrightarrow$  check for kernel requirements from deployed OS
    - ✓ MUST match deployed GPFS/Lustre expectations (gplbin: GPFS portability layer)
  - $\hookrightarrow$  heterogeneous HW complexifies the selection (switches models, CX{3,4,6} HCA...)
  - $\,\hookrightarrow\,$  MOFED upgrade comes with ALL equipement FW alignment
    - ✓ Careful with the upgrade path
- Redundant IB Subnet Manager (OpenSM)
  - $\hookrightarrow$  Routing engine: ar\_ftree (proved to be not compliant with CX4)  $\rightarrow$  ftree
  - - ✓ Otherwise: any cable error will lead to revert to minhop routing (== bad performances)
  - $\,\hookrightarrow\,$  plan dedicated and fast path to the IO targets
    - $\checkmark$  mitigating the risk of runtime "jitter" for time critical jobs





## **Difficulties Met and Lesson Learned**

### Take Away Messages for PEARC community

- Align to a *compliant* MOFED version each island before merging
  - $\hookrightarrow$  check for kernel requirements from deployed OS
    - ✓ MUST match deployed GPFS/Lustre expectations (gplbin: GPFS portability layer)
  - $\leftrightarrow$  heterogeneous HW complexifies the selection (switches models, CX{3,4,6} HCA...)
  - $\,\hookrightarrow\,$  MOFED upgrade comes with ALL equipement FW alignment
    - ✓ Careful with the upgrade path
- Redundant IB Subnet Manager (OpenSM)
  - $\hookrightarrow$  Routing engine: ar\_ftree (proved to be not compliant with CX4)  $\rightarrow$  ftree
  - ← Careful definition of root\_guid file! (all L2 switches GUID)
    - ✓ Otherwise: any cable error will lead to revert to minhop routing (== bad performances)
  - $\,\hookrightarrow\,$  plan dedicated and fast path to the IO targets
    - $\checkmark$  mitigating the risk of runtime "jitter" for time critical jobs
- ibdiagnet and ibnetdiscover are (as always) your friends





### Proposed Ethernet Topology

## **Complementary Ethernet Network**



hpc-docs.uni.lu/interconnect/ethernet/

- Flexibility of Ethernet-based networks still required
- 2-layers topology
  - $\hookrightarrow$  Upper level: Gateway Layer
    - routing, switching features, network isolation and  $\checkmark$ filtering (ACL) rules
    - meant to interconnect only switches.
    - allows to interface University network (LAN/WAN)
  - $\hookrightarrow$  bottom level: Switching Layer
    - [stacked or clustered using vPC] core switches
    - TOR (Top-the-rack) switches
    - meant to interface HPC servers and compute nodes





# **Complementary Ethernet Network**

- Compared to the precedent setup:
  - $\hookrightarrow$  enhanced service availability using Fault-Tolerance techniques
    - (redundancy, link aggregation...)
  - $\hookrightarrow$  improved maintainability Ex: firmware/security updates on switches *without* service interruption
  - $\,\hookrightarrow\,$  scalability: ready for new clusters
- Strict security policies enforced and implemented via ACLs on the layer 3

| VLAN    | Typical capacity | Description                                                                                                       |
|---------|------------------|-------------------------------------------------------------------------------------------------------------------|
| Interco | 40-100 GbE       | Interconnection with the University network.                                                                      |
| DMZ*    | 10-40 GbE        | Demilitarized zone (DMZ) network for services <i>i.e.</i> , user-accessible entry point.                          |
| prod*   | 10-40 GbE        | User-level data transfer (excluding very-high-bandwidth, low-latency transfers as well as I/O) and                |
|         |                  | Internet access, in-band management                                                                               |
| mgmt*   | 1 GbE            | Management network containing all management card (BMC) for all installed equipment (server, racks, censors etc.) |
| IPoIB   | 100 GbE          | Non routed network for IP over InfiniBand (IB)                                                                    |





# **Complementary Ethernet Network**

- Compared to the precedent setup:
  - $\hookrightarrow \ \ \, \text{enhanced service availability using Fault-Tolerance techniques} \qquad ({}^{\text{redundancy, link aggregation...}})$
  - $\hookrightarrow$  improved maintainability Ex: firmware/security updates on switches *without* service interruption
  - $\,\hookrightarrow\,$  scalability: ready for new clusters
- Strict security policies enforced and implemented via ACLs on the layer 3
- Network validation (outside classical sanity checks) and performance evaluation
  - $\, \hookrightarrow \,$  multithreaded iperf3 across the network.  $\geq$  94.1% bandwidth efficiency (1-10GbE)

| VLAN    | Interconnect Path                                                      | Theoretical | Measured Bandwidth |       |
|---------|------------------------------------------------------------------------|-------------|--------------------|-------|
|         |                                                                        | Bandwidth   | mean               | sd    |
| Interco | UL internal network $\Leftrightarrow$ HPC gateway                      | 40000 Mb/s  | 29757 Mb/s*        | 1060  |
| prod*   | <i>Iris</i> access frontend $\Leftrightarrow$ <i>Iris</i> compute node | 10000 Mb/s  | 9411 Mb/s          | 11.4  |
| mgmt*   | Aion deployment server $\Leftrightarrow$ Aion BMC compute node         | 1000 Mb/s   | 942 Mb/s           | 0.496 |

\*: default MTU parameter





#### Conclusion & Perspectives

### Conclusion

- In this talk:
  - $\,\hookrightarrow\,$  Implemented topology adaptation when integrating a new supercomputer aion
  - $\hookrightarrow$  Proposed IB topology allowed to keep the global Fat-tree height (2 levels)
    - $\checkmark$  migration from non-blocking topology to a blocking configuration on iris
    - $\checkmark$  stable and sustainable bandwidth efficiencies and marginal performance penalities
  - $\,\hookrightarrow\,$  Major Ethernet network reorganization into within a 2-layer topology
    - $\checkmark$  improved robustness, availability, maintainability and scalability
    - $\checkmark~$  secure and consistent network rules, VLANs etc.
  - $\,\hookrightarrow\,$  Successfully deployed and in production for more than 1 year
    - $\checkmark$  applicable to broad range of HPC infrastructures to consolidate their own interconnect stacks





### Conclusion & Perspectives

### Conclusion

- In this talk:
  - $\,\hookrightarrow\,$  Implemented topology adaptation when integrating a new supercomputer aion
  - $\hookrightarrow$  Proposed IB topology allowed to keep the global Fat-tree height (2 levels)
    - $\checkmark$  migration from non-blocking topology to a blocking configuration on iris
    - $\checkmark~$  stable and sustainable bandwidth efficiencies and marginal performance penalities
  - $\,\hookrightarrow\,$  Major Ethernet network reorganization into within a 2-layer topology
    - $\checkmark$  improved robustness, availability, maintainability and scalability
    - $\checkmark~$  secure and consistent network rules, VLANs etc.
  - $\,\hookrightarrow\,$  Successfully deployed and in production for more than 1 year
    - $\checkmark\,$  applicable to broad range of HPC infrastructures to consolidate their own interconnect stacks
- Perspectives and Future directions
  - $\hookrightarrow$  Smooth integration with Euro-HPC infrastructures
    - √ transparently outsource Research Computing/data analytic workflows to Tier-0 systems
  - $\,\hookrightarrow\,$  Ready for further HPC capacity expansions over the implemented topologies
    - $\checkmark$  (normally) with minimal changes



S. Varrette & al. (Univ. of Luxembourg)

#### Aggregating & Consolidating two High Performant Network Topologies

14 / 15





**Questions?** 

Sebastien Varrette, Hyacinthe Cartiaux, Teddy Valette & Abatcha Olloh Aggregating & Consolidating two High Performant Network Topologies: The ULHPC Experience – ACM PEARC'22 - www University of Luxembourg, Belval Campus Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: firsname.lastname@uni.lu

High Performance Computing @ Uni.lu mail: hpc@uni.lu



Introduction: Context and Motivations

Proposed IB Topology when Merging the two IB Islands

Proposed Ethernet Topology

Conclusion & Perspectives

### High Performance Computing @ Uni.lu





### ULHPC Technical Docs

hpc-docs.uni.lu

